Прогнозирование продаж при взаимодействии b-2-b на примере рынка автомобильных деталей 
Лакман К.

Модель;
Данные;
Результаты оценки;
Общие результаты;
Результаты моделирования;
Выводы для менеджеров;
Ограничения;

Ключевые слова: маркетинг b-2-b, промышленный маркетинг, прогнозирование, моделирование

Аннотация

Цель статьи — улучшение точности прогнозирования доходов на рынке b-2-b. Рассматривается методика моделирования динамичного рынка на уровне продукции. Продажи прогнозируются на основе одного уравнения спроса (внешнее совокупное поступление) и с применением всей модели (внутреннее поступление). Подобное улучшение расширяет возможности планирования для менеджера по маркетингу в секторе b-2-b и помогает привести уровень продаж к достижению или превышению целевых показателей.

Журнал: «Промышленный и b2b маркетинг» — №2, 2008 (© Издательский дом Гребенников)
Объем в страницах: 15
Кол-во знаков: около 28,590
* Деятельность Meta (соцсети Facebook и Instagram) запрещена в России как экстремистская.

1. Allenby, G. and Rossi, P. (1999), «Marketing models of consumer heterogeneity», Journal of Econometrics, Vol. 89 Nos 1/2, pp. 57-78.

2. Armstrong, J. (1999), «Sales forecasting», in Baker, M. (Ed.), Companion Encyclopedia of Marketing, International Thompson Business Press, London, pp. 278-90.

3. Armstrong, J. (2001), «Suggestions for further research», available atПодробнее

4. Armstrong, J.S., Brodie, R.J. and Mclntyre, S.H. (1987), «Forecasting methods for marketing: review of empirical research», International Journal of Forecasting, Vol. 11, pp. 7-23.

5. Armstrong, J.S., Koehler, A., Fildes, R., Hibon, M. and Makridakis, S. (1998), «Generalizing about univariate forecasting methods: future empirical guidance», International Journal of Forecasting, Vol. 14 No. 3, pp. 59-66.

6. Barron, M. and Targett, D. (2000), «Forecasting and the manager (Part Marketing Intelligence & Planning, Vol. 4, pp. 4-13.

7. Bass, F.M. (1995), «Empirical generalizations and marketing science: a personal view», Marketing Science, Vol. 14 No. 3, pp. 111-16.

8. Bass, F.M., Trichy, M., Krishnan, V and Jain, D.C. (1994), «Why the Bass model fits without decision variables», Marketing Science, Vol. 13 No. 3, pp. 16-28.

9. Brierty, E., Eckles, R. and Reeder, F (1998), Business Marketing, Prentice-Hall, Upper Saddle River, NJ.

10. Clarke, D.G. (2001), Marketing Analysis and Decision Making, Scientific Press, Redwood City, CA.

11. Cohen, B. (2002), «A new approach to strategic forecasting», Journal of Business Strategy, Vol. 9, pp. 38-42.

12. Dalrymple, D.J. (1987), «Sales forecasting practices: results from a United States survey», International Journal of Forecasting, Vol. 3, pp. 379-91.

13. Davidow, W. and Uttal, B. (1989), Total Customer Service, Harper & Row, New York, NY.

14. DeKimpe, M.G. and Hanssens, D.M. (1995), «The persistence of marketing effects on sales», Journal of Marketing Research, Vol. 14, pp. 1-21.

15. Dekimpe, M. and Hanssens, D.M. (2000), «Time-series models in marketing: past, present and future», International Journal of Research in Marketing, Vol. 17 Nos 2/3, pp. 183-93.

16. Durbin, J. and Watson, G.S. (1951), «Testing for serial correlation in OLS», Biometrika, Vol. 38, pp. 154-77.

17. Fildes, R. and Makridakis, S. (1995), «The impact of empirical accuracy studies on time series analysis and forecasting», International Statistical Review, Vol. 63, pp. 289-308.

18. Goodrich, R. (2003), Applied Statistical Forecasting, Business Forecast Systems, Belmont, MA.

19. Hamilton, R.L. (1994), Time Series Analysis, Princeton University Press, Princeton, NJ.

20. Hanssens, D.M., Parsons, L.J. and Schultz, R. (1990), Market Response Models: Econometric and Time Series Analysis, Kluwer Academic, Boston, MA.

21. Herbig, P., Milewicz, J. and Golden, J. (1994), «Differences in forecasting behavior between industrial product firms and consumer product firms», Journal of Business & Industrial Marketing, Vol. 9 No. 1, pp. 60-70.

22. Jain, C.L. (2004), «Benchmarking forecasting error», Journal of Business Forecasting, Vol. 23 No. 3, pp. 8-11.

23. Jeffreys, H. (1961), Theory of Probability, Oxford University Press, Oxford.

24. Johnston, J. (1992), Econometric Methods, McGraw-Hill, New York, NY.

25. Jose del Moral, M. and Valderrama, M. (1997), «A principal component approach to dynamic regression models», International Journal of Forecasting, Vol. 13 No. 2, pp. 237-44.

26. Kahle, L., Marshall, R.S. and Kropp, F (2003), «The new paradigm marketing model», Journal of Euro-Marketing, Vol. 12 Nos 3/4, pp. 99-121.

27. Kiely, D. (2004), «The state of pharmaceutical industry supply planning and demand forecasting», Journal of Business Forecasting Methods and Systems, Vol. 23 No. 3, pp. 20-2.

28. totler, P. (1994), Marketing Management: Analysis, Planning, Implementation, and Control, Prentice-Hall, Englewood Cliffs, NJ.

29. Lackman, C. (1978), «A marketing simulation model across household and industrial goods», Industrial Marketing Management, Vol. 7, pp. 268-74.

30. Lackman, C. (1995), «Marketing mix simulation modeling approach by product class: a consumer specialty goods case study», Journal of Marketing Theory and Practice, Fall, pp. 118-26.

31. Lackman, C. and Hanson, D. (1999), «Determinants of transport price elasticity*, Journal of Transport Research, Vol. 33, pp. 11-17.

32. Lawton, R. (1998), «How should additive Ho It-Winters estimates be corrected?», International Journal of Forecasting, Vol. 143, pp. 3-10.

33. Lilien, G., Kotler, P. and Moorthy, K. (1992), Marketing Models, Prentice-Hall, Englewood Cliffs, NJ.

34. Lynn, G. and Green, C.J. (1998), «Market forecasting for high-tech vs. low-tech industrial products», Engineering Management Journal, Vol. 10 No. 1, pp. 15-18.

35. Lynn, G., Schnaars, S. and Skov, R. (1999), «Survey of new product forecasting practices in industrial high technology and low technology businesses», Industrial Marketing Management, Vol. 28 No. 6, pp. 565-71.

36. Mathews, B. and Diamantopoulos, A. (1986), «Managerial intervention in forecasting: an empirical investigation of forecast manipulation^ International Journal of Research in Marketing, Vol. 3, pp. 81-92.

37. Pindyck, R. and Rubinfeld, D. (1976), Econometric Models and Economic Forecasts, McGraw-Hill, New York, NY.

38. Remus, W, O'Connor, M. and Greggs, K. (1998), «The impact of unknown correctness on the judgmental forecasting process», International Journal of Forecasting, Vol. 14 No. 3, pp. 313-22.

39. Roberts, J.H. (2000), «The intersection of modeling potential and practice», International Journal of Research in Marketing, Vol. 17 Nos 2/3, pp. 127-34.

40. Saban, K. (1997), «TQM in sales», Proceedings of Marketing Theory & Practice, Vol. 17, pp. 30-4.

41. Saibal, R. (2005), «An integrated operations-marketing model for innovative products and services», International Journal of Production Economics, Vol. 95 No. 3, pp. 327-45.

42. Sanders, N.R. and Manrodt, K.B. (1994), «Forecasting practices in US corporations: survey results», Interfaces, Vol. 24, pp. 92-100.

43. Schoell, W.F. and Guiltinan, J.R (1995), Marketing, Prentice-Hall, Englewood Cliffs, NJ.

44. Shugan, S. (2002), «Marketing science, models, monopoly models, and why we need them», Marketing Science, Vol. 21 No. 3, pp. 223-8.

45. Tellis, G.J. (1988), «The price elasticity of selective demand: a meta-analysis of econometric models of sales», Journal of Marketing Research, Vol. 25, pp. 331-41.

46. Tellis, GJ. (1999), Advertising and Sales Promotion Strategy, Sage Publications, New York, NY.

47. Zellner, A. (2004), «Keep it sophisticatedly simple», in Kuezenkamp, H. and McAleer, M. (Eds), Simplicity, Interference and Modeling, Cambridge University Press, Cambridge.

Лакман Конвей Л.

Адъюнкт-профессор маркетинга Бизнес-школы А.Дж. Паламбо, Университет Дюкен.

Питтсбург, США