Нечеткие оценки продолжительности выполнения проектов
Зак Ю.А.

Аннотация

Представление времени выполнения заданий нечеткими множествами и предлагаемый в работе алгоритм решения задачи по определению времени выполнения проекта методами fuzzy-арифметики позволяет более объективно оценить все риски, связанные с отклонением от сроков завершения проекта. На различных стадиях реализации проекта это позволит наиболее эффективно перераспределять ресурсы и тем самым увеличить вероятность выполнения проекта в кратчайшие сроки.

Содержание

1
Введение. Постановка и математическая формулировка задачи

4
Методы решения задачи алгоритмами fuzzy-арифметики
Длительность выполнения цепочек заданий и времени выполнения проекта: методы сравнения

5
Практические примеры

6
Рисунок. Граф последовательности выполнения заданий
Таблица 1. Исходные данные и результаты решения задачи
Заключение

7
Таблица 2. Допустимое наиболее позднее время для завершения выполнения заданий проекта и временной резерв
Литература

Ключевые слова: последовательности выполнения заданий, сетевые графики, критический путь, нечеткие множества, fuzzy-арифметика, проектная деятельность
Журнал: «Менеджмент сегодня» — №2, 2019 (© Издательский дом Гребенников)
Объем в страницах: 7.
Кол-во знаков: около 14,056.

1. Зак Ю.А. Определение экономических параметров выполнения проектов в условиях нечетких данных // Научное обозрение: экономика и управление. — 2012. — №4. — С. 138–146.

2. Зак Ю.А. Принятие решений в условиях размытых и нечетких данных. — М.: UR SS, 2013. — 352 с.

3. Зак Ю.А. Принятие эффективных решений в экономике и менеджменте в условиях наличия нечисловой информации и размытых данных. — М.: Экономика, 2018. — 245 с.

4. Матюшок В.М., Бурчакова М.А., Лазанюк И.В., Матюшок С.В., Смаржевский И.А., Сорокин Л.В., Якубова Т.Н. Управление проектами. — М.: РУДН, 2010. — 553 с.

5. Наумов А.А., Баженов Р.И. О проблемах классических показателей эффективности инвестиционных проектов // Современные научные исследования и инновации. — 2014. — №11–2(43). — С. 181–187.

6. Олейникова С.А. Модификация метода PERT решения задач сетевого планирования и управления // Системы управления и информационные технологии. — 2008. — №4(34). — С. 42–45.

7. Hajdu M., Bokor O. (2014). «The effects of different activity distributions on project duration in PERT networks». Procedia — Social and Behavioral Sciences, Vol. 119, pp. 766–775.

Зак Юрий Александрович

Зак Юрий Александрович
д. т. н.

Научный консультант.

г. Аахен, Германия

Автор десяти книг и более 230 публикаций в центральных международных журналах и сборниках.

Другие статьи автора 21